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Abstract

IMPORTANCE Chest radiography is the most common diagnostic imaging examination performed
in emergency departments (EDs). Augmenting clinicians with automated preliminary read assistants
could help expedite their workflows, improve accuracy, and reduce the cost of care.

OBJECTIVE To assess the performance of artificial intelligence (AI) algorithms in realistic radiology
workflows by performing an objective comparative evaluation of the preliminary reads of
anteroposterior (AP) frontal chest radiographs performed by an AI algorithm and radiology residents.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study included a set of 72 findings
assembled by clinical experts to constitute a full-fledged preliminary read of AP frontal chest
radiographs. A novel deep learning architecture was designed for an AI algorithm to estimate the
findings per image. The AI algorithm was trained using a multihospital training data set of 342 126
frontal chest radiographs captured in ED and urgent care settings. The training data were labeled
from their associated reports. Image-based F1 score was chosen to optimize the operating point on
the receiver operating characteristics (ROC) curve so as to minimize the number of missed findings
and overcalls per image read. The performance of the model was compared with that of 5 radiology
residents recruited from multiple institutions in the US in an objective study in which a separate data
set of 1998 AP frontal chest radiographs was drawn from a hospital source representative of realistic
preliminary reads in inpatient and ED settings. A triple consensus with adjudication process was used
to derive the ground truth labels for the study data set. The performance of AI algorithm and
radiology residents was assessed by comparing their reads with ground truth findings. All studies
were conducted through a web-based clinical study application system. The triple consensus data set
was collected between February and October 2018. The comparison study was preformed between
January and October 2019. Data were analyzed from October to February 2020. After the first round
of reviews, further analysis of the data was performed from March to July 2020.

MAIN OUTCOMES AND MEASURES The learning performance of the AI algorithm was judged using
the conventional ROC curve and the area under the curve (AUC) during training and field testing on
the study data set. For the AI algorithm and radiology residents, the individual finding label
performance was measured using the conventional measures of label-based sensitivity, specificity,
and positive predictive value (PPV). In addition, the agreement with the ground truth on the
assignment of findings to images was measured using the pooled κ statistic. The preliminary read
performance was recorded for AI algorithm and radiology residents using new measures of mean
image-based sensitivity, specificity, and PPV designed for recording the fraction of misses and
overcalls on a per image basis. The 1-sided analysis of variance test was used to compare the means
of each group (AI algorithm vs radiology residents) using the F distribution, and the null hypothesis
was that the groups would have similar means.
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Abstract (continued)

RESULTS The trained AI algorithm achieved a mean AUC across labels of 0.807 (weighted mean
AUC, 0.841) after training. On the study data set, which had a different prevalence distribution, the
mean AUC achieved was 0.772 (weighted mean AUC, 0.865). The interrater agreement with ground
truth finding labels for AI algorithm predictions had pooled κ value of 0.544, and the pooled κ for
radiology residents was 0.585. For the preliminary read performance, the analysis of variance test
was used to compare the distributions of AI algorithm and radiology residents’ mean image-based
sensitivity, PPV, and specificity. The mean image-based sensitivity for AI algorithm was 0.716 (95%
CI, 0.704-0.729) and for radiology residents was 0.720 (95% CI, 0.709-0.732) (P = .66), while the
PPV was 0.730 (95% CI, 0.718-0.742) for the AI algorithm and 0.682 (95% CI, 0.670-0.694) for the
radiology residents (P < .001), and specificity was 0.980 (95% CI, 0.980-0.981) for the AI algorithm
and 0.973 (95% CI, 0.971-0.974) for the radiology residents (P < .001).

CONCLUSIONS AND RELEVANCE These findings suggest that it is possible to build AI algorithms
that reach and exceed the mean level of performance of third-year radiology residents for full-
fledged preliminary read of AP frontal chest radiographs. This diagnostic study also found that while
the more complex findings would still benefit from expert overreads, the performance of AI
algorithms was associated with the amount of data available for training rather than the level of
difficulty of interpretation of the finding. Integrating such AI systems in radiology workflows for
preliminary interpretations has the potential to expedite existing radiology workflows and address
resource scarcity while improving overall accuracy and reducing the cost of care.
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Introduction

The increase in imaging orders and the availability of high-resolution scanners have led to large
workloads for radiologists.1,2 With advances in artificial intelligence (AI), there is now potential for
radiologists to be aided in clinical workflows by machine assistants in a manner similar to the duties
performed by radiology residents,3 through preliminary interpretations that can be later corrected or
approved by attending radiologists. This can help expedite workflows, improve accuracy, and
ultimately reduce overall costs.3

Recent work has focused on chest radiography, the most common imaging examination
conducted in emergency departments (EDs) and urgent care settings. Several studies have reported
machine learning models achieving radiologist-level performance for different chest radiograph
findings.4-7 However, large-scale adoption of these models is still lacking, owing to 3 main factors:
limited findings, limited generalizability across data sets, and lack of rigorous comparative
assessment studies vis-à-vis radiologists against criterion standard data sets. There has been no
systematic effort to catalog the number of findings that constitute sufficient coverage of the
anomalies seen in chest radiographs.8 The generalizability of the models across data sets even for
limited target findings has been difficult owing to lack of sufficient variety in training data and the
choice of thresholds used for estimation that are not necessarily optimized on relevant metrics.
Typically, models are trained and tested on a single hospital’s data, which are not necessarily
representative of prevalence distributions seen in other hospitals. Lastly, to our knowledge, there has
been no systematic study that objectively compares the performance of machine learning models
vs radiologists for a comprehensive preliminary read on a sufficiently large test data set of chest
radiographs. Existing studies report comparisons of model performance on a limited number of
labels, with ground truth obtained by majority vote from board-certified radiologists.9-12 For
machines to serve as cognitive assistants, they must prove themselves through the
comprehensiveness of coverage of findings based on meaningful metrics that match the realistic use
scenarios and objective evaluation through rigorous comparative studies.
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In this diagnostic study, we present an AI algorithm that was developed keeping the
aforementioned requirements in mind. Since our target use case was for emergency settings, and
since other viewpoints would need a broader cataloging effort or integration of information from
lateral views, we focused on anteroposterior (AP) frontal chest radiographs for cataloging and field
testing. Specifically, we used a systematic clinician-guided multistep approach to first catalog the
space of possible findings in AP frontal chest radiographs. We then acquired a large multihospital
data set and developed a text analysis algorithm to label the radiographs from their associated
reports. Next, we designed a novel deep learning architecture for the simultaneous recognition of a
large number of findings in chest radiographs and optimized its prediction using F1 score–based
thresholds.14 Finally, we assessed the readiness of the AI algorithm for preliminary reads of AP frontal
chest radiographs through an objective comparison study with reads by radiology residents on a
triple consensus with adjudication ground truth data of 1998 AP frontal chest radiographs drawn
from a source that was representative of realistic inpatient and ED settings.

Methods

All data used in this diagnostic study were deidentified and covered under the secondary use of
health data, per Safran et al.13 Informed patient consent was waived by the National Institutes of
Health (NIH) institutional review board for the NIH data set.4 The data in the MIMIC dataset has been
previously deidentified, and the institutional review boards of the Massachusetts Institute of
Technology and Beth Israel Deaconess Medical Center both approved the use of the database for
research. This study is reported following the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.

Characterizing the Space of Findings Seen in AP Chest Radiographs
To assemble a comprehensive list of radiology findings in chest radiographs, a team of 4 clinicians (3
radiologists [A. Sharma, M. Morris, and B.S.] and 1 internal medicine physician [J.T.W.]) used a process
shown in eFigure 1 in the Supplement. Specifically, they iteratively searched through the best practice
literature, including Fleishner’s glossary,15 consulted several radiologists for a raw list of everyday use
terms, and arrived at a list of initial core findings. They were found to be in 6 major categories:
anatomical findings, tubes and lines, placements of tubes and lines, external devices, viewpoint-
related issues, and diseases associated with findings. These were used as starting vocabulary to
accumulate related terms from more than 200 000 radiology reports obtained from the MIMIC-III16

intensive care unit database, which includes other reports relating to admission. Specifically, we used
a tool called the Domain Learning Assistant17 (DLA) to assemble related terms in 3 iterative steps. In
the preprocessing step, the text corpus of reports was analyzed for n-grams, and a 2-layer
word2Vec18 neural net model was built for learning term embeddings from raw text. In the explore
phase, the starting vocabulary phrases were projected using this model to find the nearest
n-dimensional vectors and hence their corresponding original terms from textual reports. These
were then presented in the user interface for a clinician to validate and select (eFigure 2 in the
Supplement). In the exploit phase, the given terms were modified by substitution and expanded
terms to include abbreviations, synonyms, and ontologically related and visually similar concepts,
which were further adjudicated in the tool by the radiologists. Finally, the created entries in the
lexicon were reviewed by 2 radiologists (H.A. and A. Syed) for semantic consistency. Currently, the
lexicon consists of more than 11 000 unique terms covering the space of 72 core findings, as listed in
Table 1, and represents the largest set of finding labels assembled for chest radiographs, to our
knowledge.

Assembling the Data Sets for Model Training
The data set for model training (hereafter, the modeling data set) was assembled from 2 hospital
sources: MIMIC-4,19 and the NIH4 depicting high-quality Digital Imaging and Communications in
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Table 1. Core Finding Labels Derived From the Chest Radiograph Lexicon

Finding
Samples in modeling
data set, No.

AUC of AI
algorithmType Label

Anatomical Not otherwise specified opacity (eg, pleural or
parenchymal opacity)

81 013 0.736

Anatomical Linear or patchy atelectasis 79 218 0.776

Anatomical Pleural effusion or thickening 76 954 0.887

Anatomical No anomalies 55 894 0.847

Anatomical Enlarged cardiac silhouette 49 444 0.846

Anatomical Pulmonary edema or hazy opacity 40 208 0.861

Anatomical Consolidation 29 986 0.79

Anatomical Not otherwise specified calcification 14 333 0.82

Anatomical Pneumothorax 11 686 0.877

Anatomical Lobar or segmental collapse 10 868 0.814

Anatomical Fracture 9738 0.758

Anatomical Mass or nodule (not otherwise specified) 8588 0.742

Anatomical Hyperaeration 8197 0.905

Anatomical Degenerative changes 7747 0.83

Anatomical Vascular calcification 4481 0.873

Anatomical Tortuous aorta 3947 0.814

Anatomical Multiple masses or nodules 3453 0.754

Anatomical Vascular redistribution 3436 0.705

Anatomical Enlarged hilum 3106 0.734

Anatomical Scoliosis 2968 0.815

Anatomical Bone lesion 2879 0.762

Anatomical Hernia 2792 0.828

Anatomical Postsurgical changes 2526 0.834

Anatomical Mediastinal displacement 1868 0.907

Anatomical Increased reticular markings or ILD pattern 1828 0.891

Anatomical Old fractures 1760 0.762

Anatomical Subcutaneous air 1664 0.913

Anatomical Elevated hemidiaphragm 1439 0.775

Anatomical Superior mediastinal mass or enlargement 1345 0.709

Anatomical Subdiaphragmatic air 1258 0.75

Anatomical Pneumomediastinum 915 0.807

Anatomical Cyst or Bullae 778 0.76

Anatomical Hydropneumothorax 630 0.935

Anatomical Spinal degenerative changes 454 0.818

Anatomical Calcified nodule 439 0.736

Anatomical Lymph node calcification 346 0.603

Anatomical Bullet or foreign bodies 339 0.715

Anatomical Other soft tissue abnormalities 334 0.652

Anatomical Diffuse osseous irregularity 322 0.89

Anatomical Dislocation 180 0.728

Anatomical Dilated bowel 92 0.805

Anatomical Osteotomy changes 76 0.942

Anatomical New fractures 70 0.696

Anatomical Shoulder osteoarthritis 70 0.698

Anatomical Elevated humeral head 69 0.731

Anatomical Azygous fissure (benign) 47 0.652

Anatomical Contrast in the GI or GU tract 17 0.724

Device Other internal postsurgical material 26 191 0.831

Device Sternotomy wires 12 262 0.972

Device Cardiac pacer and wires 12 109 0.985

(continued)
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Medicine imagery (ie, 1024 × 1024 pixels). The MIMIC-4 was collected from 2011 to 2016, while the
NIH data set was collected during 1992 to 2015. They showed a wide range of clinical settings,
including intensive care units, urgent care, inpatient care, and EDs.

The MIMIC-419 data set had associated radiology reports, while the NIH data set4 came with few
labels, requiring recreation of reports through fresh reads. The sampling procedure, as well as the
resulting training data set created, are shown in Figure 1. Both AP and posteroanterior (PA) images
were used for training the model to get good coverage of findings of AP chest radiographs that are
also seen in PA images. While all AP (240 764 images) and PA (101 362 images) images in the MIMIC-4
data set were used owing to available reports, the NIH data set was randomly sampled for report
generation, from which only a subset of 11 692 images could be manually reread.

Extracting Finding Labels From Reports
To derive labels for images from their associated radiological reports, we extracted sentences from
relevant sections of the report (those labeled findings or overall impression). Using the generated
lexicon, we systematically checked for each finding term and its variants in the sentences using
stemming and word-form normalization for robust localization. To reduce false positives in labeling,
we detected negation terms (occurring prior to and after the target finding label), unchanged
statuses of a mentioned label, hypothetically mentioned label, and optionally, the associated
anatomical context. Examples of radiology reports and the automatically extracted findings from
these reports are shown in eTable 1 in the Supplement.

On a sample collection of 2771 radiological reports and using 2 radiologists (A. Sharma and A.
Syed) to manually validate the resulting 10 842 findings flagged by the algorithm, we found 84
semantically inaccurate detections and an overall precision of 99.2% and recall of 92.6%. Since the
misses mainly corresponded to missing lexicon vocabulary, this was found to be sufficient for our
image labeling purposes.

Table 1. Core Finding Labels Derived From the Chest Radiograph Lexicon (continued)

Finding
Samples in modeling
data set, No.

AUC of AI
algorithmType Label

Device Musculoskeletal or spinal hardware 5481 0.848

Technical Low lung volumes 25 546 0.877

Technical Rotated 3809 0.803

Technical Lungs otherwise not fully included 1440 0.717

Technical Lungs obscured by overlying object or structure 653 0.68

Technical Apical lordotic 620 0.716

Technical Apical kyphotic 566 0.872

Technical Nondiagnostic radiograph 316 0.858

Technical Limited by motion 290 0.628

Technical Limited by exposure or penetration 187 0.834

Technical Apices not included 175 0.822

Technical Costophrenic angle not included 62 0.807

Tubes and lines Central intravascular lines 57 868 0.891

Tubes and lines Tubes in the airway 32 718 0.96

Tubes and lines Enteric tubes 27 998 0.939

Tubes and lines Incorrect placement 11 619 0.827

Tubes and lines Central intravascular lines: incorrectly positioned 4434 0.769

Tubes and lines Enteric tubes: incorrectly positioned 4372 0.931

Tubes and lines Coiled, kinked, or fractured 4325 0.857

Tubes and lines Tubes in the airway: incorrectly positioned 1962 0.919

Abbreviations: AI, artificial intelligence; AUC, area
under the curve; GI, gastrointestinal; GU,
genitourinary; ILD, interstitial lung disease.

JAMA Network Open | Imaging Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents

JAMA Network Open. 2020;3(10):e2022779. doi:10.1001/jamanetworkopen.2020.22779 (Reprinted) October 9, 2020 5/14

Downloaded From: https://jamanetwork.com/ by Piergiorgio Gigliotti on 10/25/2020

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.22779&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.22779


Designing a Neural Network Architecture
A deep neural network architecture was designed (Figure 2). It combines the advantages of
pretrained features with a multiresolution image analysis through the feature pyramid network20 for
fine grained classification. Specifically VGGNet21 (16 layers) and ResNet22 (50 layers) were used as
the initial feature extractors, which were trained on several million images from ImageNet.23 Dilated
blocks composed of multiscale features24 and skip connections25 were used to improve convergence
while spatial dropout was used to reduce overfitting. Group normalization26 (16 groups) was used,
along with Rectified Linear Unit27 as activation function. Dilated blocks with different feature
channels were cascaded with maxpooling to learn more abstract features. Bilinear pooling was used
for effective fine-grained classification.28

The architecture can be seen as a combination of ResNet5022 and VGG1621 and was selected
after experimenting with many alternatives. For example, a baseline VGG1621 model was also
developed using ImageNet pretraining,23 with all layers up to the final convolutional layer followed
by global average pooling and a fully connected layer for classification. It was abandoned after it
yielded worse performance in terms of mean area under the curve (AUC).

Figure 1. Sampling of Data Distributions for Artificial Intelligence Algorithm Training and Evaluation
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Two images were excluded from the comparison study data set owing to radiology resident annotations missing. The prevalence distribution of training and study data sets are
different owing to the difference in the sampling process.
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Algorithm Training
To train the deep learning model, the modeling data set was split into 3 partitions for training,
validation, and testing. Since existing methods of random splitting29 cannot ensure adequate
number of images for low-incidence–label training, our splitting algorithm sorted the labels by their
frequencies of occurrences. It then iteratively assigned the images from distinct patients to the 3
partitions in the ratio of 70% for training, 10% for validation, and 20% for testing. Once the number
of patients in each split was determined per label, the assignment of the patients and images was
still random. Thus the algorithm ensured that the prevalence distributions were similar for training,
validation, and testing partitions while minimizing the selection bias through random sampling of
images. eAppendix 1 in the Supplement details the algorithm and eFigure 3 in the Supplement shows
the resulting similarity in the prevalence distribution in the 3 partitions of the modeling data set of
Figure 1.

The deep learning model was trained on all 72 finding labels. As the images were of high
resolution (ie, 1024 × 1024 pixels), training took approximately 10 days. We used the Nadam
optimizer for fast convergence, with the learning rate as 2 × 10−6. Two NVIDIA Tesla V100 graphics
processing units with 16 GB memory were used for multi–graphics processing unit training with a
batch size of 12 and 30 epochs.

The performance of the trained model on the testing partition of the modeling data set for all
the 72 labels is shown through the area under the respective receiver operating characteristics (ROC)
curves in Table 1. The ROC curve shows the tradeoff between sensitivity and specificity as a function
of thresholds on the estimated values. The mean AUC across all the labels was 0.807 (weighted mean
AUC, 0.841). A comparable VGG-16 based implementation gave a mean AUC of 0.604. Although
individual label accuracies could still be improved with more training data, this network covers the
largest number of chest radiograph findings to date, to our knowledge.

Algorithm Prediction
While the ROC curve shows the algorithm performance as a function of thresholds, a reasonable
threshold had to be chosen per label for use in estimation on unseen data sets. Since our objective
was to maximize the number of correct detections per image while minimizing the false positives, we

Figure 2. Deep Learning Network Architecture for Anteroposterior Chest Radiographs
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selected the thresholds by maximizing the mean image-based F1 score,14 a well-known measure of
accuracy that is the harmonic mean of positive predictive value (PPV) and sensitivity. The validation
partition of the modeling data set was used for this optimization. Further details are available in
eAppendix 2 in the Supplement.

Comparative Study on Preliminary Reads
To assess the readiness of the trained AI algorithm for realistic inpatient settings, we performed a
comparative study with radiology residents involving full-fledged preliminary read of frontal AP chest
radiographs. The data set was drawn from the same NIH hospital data source,4 but this time focusing
on single AP frontal chest radiographs from patients older than 12 years, based on the target use case
(Figure 1). A random sampling across the initial label combinations provided in the NIH data set4 was
used to create the data set of 1998 AP frontal chest radiographs (hereafter, study data set). Since this
was performed prior to creating the ground truth labels, the breadth of label coverage was uncertain.
Furthermore, the resulting prevalence distribution was not expected to match the modeling data
set, thus serving as a good case to test the AI algorithm’s generalization ability.

Ground Truth Labeling for Study Data Set
For the purpose of the comparison study, we created criterion standard labels through a process in
which 3 board-certified radiologists (A. Sharma, M. Morris, and B.S.) with 3 to 5 years of experience
each independently labeled all the images first. The annotation platform showed full-resolution
images (ie, 1024 × 1024 pixels) with zoom, inversion, windowing, and contrast adjustment to
recreate a typical radiological read setting. The discrepancies in labels were recorded per image and
were shown back to these radiologists in the interface as shown in eFigure 5 in the Supplement.
Consensus was achieved through an in-person video adjudication discussion. The criterion-standard
label creation process took more than 400 hours during a period of 9 months. Coverage was
achieved for at least 68 of 72 finding labels. The resulting prevalence distribution of labels in the
study data set (eFigure 4 in the Supplement) was different from the one used for training (eFigure 3
in the Supplement).

Recording Reads of Radiology Residents
Five radiology residents were selected from academic medical centers around the US after they
passed a reading adequacy test on 5 unrelated chest radiographs. Each of the residents evaluated
approximately 400 nonoverlapping set of images and were unaware of AI algorithm estimates. A
web-based structured form interface was used to show the images and collect their discrete read on
the 72 possible findings (eFigure 6 in the Supplement). This objective capture avoided the accidental
miss typical of free-form reporting. Furthermore, the label names were selected to be similar to those
in routine reporting. Prior training on finding definitions was provided to residents so that the
selection of anomalies through the list shown in the user interface did not artificially constrain the
radiologists.

Statistical Analysis
The learning performance of the AI algorithm was judged using the conventional ROC curve and the
area under the curve (AUC) during training and field testing on the study data set. The individual
finding label performance was measured using the conventional measures of label-based sensitivity,
specificity, and positive predictive value (PPV). The agreement with the ground truth on the
assignment of findings to images was measured using the pooled κ statistic. The preliminary read
performance was recorded using mean image-based sensitivity, specificity, and PPV designed for
recording the fraction of misses and overcalls on a per image basis. Analysis of variance (ANOVA) and
95% CIs were calculated using the Python scipy.stats module version 1.5.2 (Python Software
Foundation. P values reported for our ANOVA test are from 1-way ANOVA tests. We considered
P < .05 as statistically significant and report the P values for each test.
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Results

The AI algorithm generalized well to the study data set despite it having a different prevalence
distribution, particularly for prevalent findings. Figure 3 shows the ROC curves for 6 of the most

Figure 3. Receiver Operating Characteristic Curves of Artifical Intelligence Algorithm
on Study Data Set and Relative Performance
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ones in the modeling data set. The light blue square
indicates mean sensitivity and 1 − specificity of the
radiology residents on the comparison study data set;
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threshold derived from training data.
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prevalent labels on the study data set. Comparing the AUCs for all the prevalent finding labels (ie,
with at least 50 images) (eTable 2 in the Supplement) with the corresponding data in the training
data set (Table 1), we observed that generalization was more a function of label prevalence than
interpretation difficulty (eg, pneumothorax). The mean AUC of the AI algorithm for all 72 finding
labels on the study data set was 0.772 (weighted mean, 0.865).

Comparison of Per-Finding Performance
Using the F1 score–based thresholds selected during training, we retained the estimated labels from
the AI algorithm. Similarly, the radiology residents’ discrete label choices for each image were
recorded. The per-finding label performances for both AI algorithm and radiology residents were
each measured using conventional label-based sensitivity, specificity, and PPV30 measures using the
ground truth as reference. eTable 3 in the Supplement lists the performance for all prevalent findings
labels within the study data set. Figure 3 illustrates the relative performance of AI algorithm and
radiology residents for the 6 most prevalent findings. Of the 9 most prevalent findings, we observed
that the residents’ operating points were on or very near the ROC curve for 4 findings (ie, no
anomalies, opacities, pleural effusion, and airway tubes), below for 2 findings (ie, pulmonary edema
and cardiomegaly), and above for 3 findings (ie, atelectasis, central vascular lines, and consolidation).

The relative agreement of the estimations across all estimated findings was measured through
the pooled κ scores31 as 0.543 for the AI algorithm and 0.585 for the radiology residents. The overall
distribution of κ scores is shown in eFigure 7 in the Supplement. Overall, the AI algorithm performed
similarly to residents for tubes and lines and nonanomalous reads, and generally outperformed for
high-prevalence labels, such as cardiomegaly, pulmonary edema, subcutaneous air, and
hyperaeration. Conversely, the AI algorithm generally performed worse for lower-prevalence findings
that also had a higher level of difficulty of interpretation, such as masses or nodules and enlarged
hilum. eTable 3 in the Supplement summarizes the overall agreement results.

Comparison of the Preliminary Read Performance of the AI Algorithm
vs Radiology Residents
Since the read quality is assessed in clinical workflows by the number of overcalls or misses per
image, we measured the preliminary read performance using image-based sensitivity, PPV, and
specificity measures that record the ratios of true positives, false positives, and true negatives on a
per-image basis, as outlined in eAppendix 3 in the Supplement. We calculated the means of these
measures across images for the AI algorithm and radiology residents. Since multiple radiology
residents were involved, these measures were further meaned across residents. We then performed
a 1-sided analysis of variance test to compare the means of 2 groups using the F distribution. The null
hypothesis of the test was that the groups would have similar means. The results are shown in
Table 2. The mean image-based sensitivity was 0.716 (95% CI, 0.704-0.729) for the AI algorithm and
0.720 (95% CI, 0.709-0.732) for the radiology residents , (P = 0.66), while the PPV was 0.730 (95%
CI, 0.718-0.742) for the AI algorithm and 0.682 (95% CI, 0.670-0.694) for the radiology residents
(P < .001), and specificity was 0.980 (95% CI, 0.980-0.981)for the AI algorithm and 0.973 (95% CI,
0.971-0.974) for the radiology residents (P < .001). Thus, while no statistically significant difference
was found in mean image-based sensitivity between groups, the specificity and PPV were statistically

Table 2. Preliminary Read Performance Differences Between Radiology Residents and AI Algorithm

Method

No. Image-based measure, mean (95% CI)

Images Findings PPV Sensitivity Specificity
All radiology residents 1998 72 0.682

(0.670-0.694)
0.720
(0.709-0.732)

0.973
(0.971-0.974)

AI algorithm 1998 72 0.730
(0.718-0.742)

0.716
(0.704-0.729)

0.980
(0.979-0.981)

AI vs radiology residents,
P value

NA NA .001 .66 <.001 Abbreviations: AI, artificial intelligence; NA, not
applicable; PPV, positive predictive value.
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higher for the AI algorithms compared with radiology residents. eFigure 8 in the Supplement shows
the box plots for the preliminary read performance differences of radiology residents and our AI
algorithm, reinforcing the same conclusion.

Discussion

This diagnostic study found that the variation in per-finding performance of both the residents and
AI algorithm was primarily a function of the level of interpretation difficulty for an anomaly, the
number of training images provided, and the generalizability across the varieties in anomaly
appearance across data sets. In general, residents performed better for more subtle anomalies, such
as masses and nodules, misplaced lines and tubes, and various forms of consolidation, while the AI
algorithm was better at detecting nonanomalous findings, the presence of tubes and lines, and
clearly visible anomalies, such as cardiomegaly, pleural effusion, and pulmonary edema.

We also note that threshold choices made to maximize the preliminary read performance of the
AI algorithm could imply a suboptimal choice of threshold for the specific finding itself (eg,
consolidation), which may lead to some labels never being called. For the target use cases involving
expedited workflow, this was still appropriate, as the most common findings could be caught in the
AI-driven preliminary read while the more complex findings would benefit from expert overreads.
Finally, as shown in eTable 4 in the Supplement, there is also considerable variation across radiology
residents themselves, pointing to the variations in training received in respective schools.

Limitations
This study has some limitations. First, since the study data set was drawn before labeling, the ground
truth data after labeling did not have sufficient representation from the less prevalent findings for
adequate testing of the AI algorithm, although it was already trained for these findings. If the
MIMIC-4 data set had been available earlier, the study data set could have been preselected using
automatic labeling from the associated reports. This could increase the likelihood of adequate
coverage of low-prevalence labels after triple consensus ground truth labeling. Second, the
comparison with radiology residents was done using data obtained from only 5 radiology residents.
A more comprehensive study of the performance of a larger pool of radiology residents could
strengthen the conclusions.

Conclusions

This diagnostic study is significant to the AI and radiology communities in several ways. First, it has a
large clinician involvement in the design and execution of the study, indicating the integral role of
radiologists and clinical experts in the development of AI algorithms. In our study, we have used
clinical expertise in many phases, including the cataloguing of possible findings in chest radiographs,
formation of a chest radiograph lexicon with synonyms and term variants curated from reports,
creation of triple-consensus ground truth, and objective recording of comparable radiology read
performances. Second, with the wide spectrum of findings labeled in a large training data set
acquired from multiple hospital sources, confounding factors due to hidden stratification within
anomalies was more fully covered than any other existing efforts. Third, we have shown that it is
possible to build a single neural network to capture a wide variety of fine-grained findings and
optimizing their prediction by selecting operating points based on the F1 score. Fourth, using a
systematic comparative study, we have shown that it is possible to build AI algorithms that reach the
typical level of performance of third-year radiology residents for a large set of findings. Thus this
study established a practical benchmark for making AI algorithms clinically usable in future.

Overall, this study points to the potential use AI systems in future radiology workflows for
preliminary interpretations that target the most prevalent findings, leaving the final reads performed
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by the attending physician to still catch any potential misses from the less-prevalent fine-grained
findings. Having attending physicians quickly correct the automatically produced reads, we can
expect to significantly expedite current dictation-driven radiology workflows, improve accuracy, and
ultimately reduce the overall cost of care.
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